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In many applications, an anomaly detection system presents the most anomalous data instance to a human
analyst, who then must determine whether the instance is truly of interest (e.g., a threat in a security set-
ting). Unfortunately, most anomaly detectors provide no explanation about why an instance was considered
anomalous, leaving the analyst with no guidance about where to begin the investigation. To address this
issue, we study the problems of computing and evaluating sequential feature explanations (SFEs) for anom-
aly detectors. An SFE of an anomaly is a sequence of features, which are presented to the analyst one at a
time (in order) until the information contained in the highlighted features is enough for the analyst to make
a confident judgement about the anomaly. Since analyst effort is related to the amount of information that
they consider in an investigation, an explanation’s quality is related to the number of features that must be
revealed to attain confidence. In this article, we first formulate the problem of optimizing SFEs for a particular
density-based anomaly detector. We then present both greedy algorithms and an optimal algorithm, based
on branch-and-bound search, for optimizing SFEs. Finally, we provide a large scale quantitative evaluation of
these algorithms using a novel framework for evaluating explanations. The results show that our algorithms
are quite effective and that our best greedy algorithm is competitive with optimal solutions.
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1 INTRODUCTION

Anomaly detection is the problem of identifying anomalies in a dataset, where anomalies are those
points that are generated by a process that is distinct from the process generating “normal” points.
Statistical anomaly detectors address this problem by seeking statistical outliers in the data. In
most applications, however, statistical outliers will not always correspond to the semantically-
meaningful anomalies. For example, in a computer security application, a user may be considered
statistically anomalous due to an unusually high amount of copying and printing activity, which
may have a benign explanation, and hence is not a true and interesting anomaly. Because of this
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Fig. 1. The anomaly detection pipeline addressed by this article (from left to right). The original dataset

contains both normal points and anomalies. Our goal is to detect the true semantic anomalies. First, an

anomaly detector is applied to identify a set of statistical outliers, which are further analyzed by a human

analyst in order to identify the true semantic anomalies. The false negatives (missed true anomalies) of the

overall system are composed of the following two types of true anomalies: 1) anomalies that are considered

to be statistically normal and are never presented to the human analyst, and 2) anomalies that are statistical

outliers but are misidentified by the human analyst as normal. The first type of false negative can only

be avoided by changing the anomaly detector and are not the focus of this article. The second type of false

negative can be avoided by making it easier for analysts to detect true anomalies when presented with them.

The focus of this article is to compute explanations of statistical outliers that reduce the effort required to

detect such true anomalies.

gap between statistics and semantics, an analyst typically investigates the statistical outliers in
order to decide which ones are likely to be true anomalies and deserve further action.

Given an outlier point, an analyst faces the problem of examining the data associated with that
point in order to make a judgment about whether it is an anomaly or not. Even when points are de-
scribed by just tens of features this can be challenging, especially so when feature interactions are
critical to the judgment. In practice, the situation is often much worse with points being described
by thousands of features. In these cases, there is a significant risk that even when the detector
passes a true anomaly to the analyst, the analyst will not recognize the key properties that make
the point anomalous due to information overload. This means that, in effect, the missed anomaly
rate of the overall system is a combination of the miss rates of both the anomaly detector and
the analyst. Thus, one avenue for improving detection rates is to reduce the effort required by an
analyst to correctly identify anomalies, with the intended side-effect of reducing the analyst miss
rate. This anomaly detection pipeline is depicted in Figure 1.

In this article, we consider reducing the analyst’s detection effort by providing them with expla-
nations about why points were judged to be anomalous by the detector. Given such an explanation,
the analyst can minimize his effort in the investigation by focusing on information related to the
explanation.

Our first contribution is to introduce an intuitive and simple form of explanation, which we refer
to as sequential feature explanations (SFEs). Given a point judged to be an outlier by a detector, an
SFE for that point is an ordered sequence of features where the order indicates the importance
with respect to causing a high outlier score. An SFE is presented to the analyst by incrementally
revealing the features one at a time, in order, until the analyst has acquired enough information
to make a decision about whether the point is an anomaly or not (e.g., in the security domain, a
threat or non-threat). The investigative work of the analyst is roughly related to the number of
features that must be revealed. Hence, the goal for computing SFEs is to minimize the number of
features that must be revealed in order for the analyst to confidently identify true anomalies.

Our second contribution is to formalize the problem of optimizing SFEs and to develop algo-
rithms to solve that problem. We develop both greedy algorithms and an optimal algorithm based
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on branch-and-bound search. These algorithms can be applied to any density-based anomaly de-
tector given that it is possible to (approximately) compute joint marginals of a detector’s density
function, which is an operation that is supported by most commonly-used densities.

Our third contribution is to formulate a quantitative method for evaluating SFEs, which allows
for the comparison of different SFE algorithms. The key idea of the approach is to construct a
simulated analyst for each anomaly detection benchmark using supervised learning and ground
truth about which points are anomalies. The simulated analyst can then be used to evaluate the
quality of SFEs with respect to the number of features that must be revealed to reach a specified
confidence level. While in concept a human analyst could be used in the evaluation process, it
is impractical to conduct a large number of such human-analyst experiments over a large num-
ber of benchmarks. Hence, in this article, we focused on how to conduct large-scale quantitative
evaluations—necessarily using simplified analyst models. To the best of our knowledge, this is the
first methodology for quantitatively evaluating any type of anomaly explanation method.

Finally, our fourth contribution is to provide an empirical investigation of several methods for
computing SFEs. Our primary evaluations use a recently constructed set of anomaly detection
benchmarks derived from real-world supervised learning data. In addition, we provide an evalu-
ation on the standard KDD-Cup benchmark. The investigation leads to a recommended method
and additional insights into the methods.

The remainder of the article is organized as follows. Section 2 reviews related work on explana-
tions for both supervised learning and anomaly detection. Next, Section 3 presents the anomaly-
detection framework used in this article. Section 4 then more formally presents the concept of
SFEs and possible quality metrics. Section 5 formulates an optimal SFE computation method, and
then describes two greedy methods for computing SFEs. Section 7.2 shows a comparison between
the optimal and greedy methods in achieving the optimal objective value. Section 6 introduces our
quantitative evaluation framework for SFEs, and finally Section 7 presents experiments evaluating
the introduced methods within the framework.

2 RELATED WORK

In both supervised learning tasks and unsupervised ones like anomaly detection, the problem of
computing explanations has received relatively little attention. Related work in the area of su-
pervised classification aims to provide explanations about why a classifier predicted a particular
label for a particular instance. For example, a number of methods have been proposed to produce
explanations in the form of relevance scores for each feature, which indicate the relative impor-
tance of a feature to the classification decision. Such scores have been computed by comparing
the difference between a classifier’s prediction score and the score when a feature is assumed to
be unobserved [12], or by considering the local gradient of the classifier’s prediction score with
respect to the features for a particular instance [1].

Other work has considered how to score features in a way that takes into account the joint
influence of feature subsets on the classification score, which usually requires approximations due
to the exponential number of such subsets [13, 14]. Since these methods are typically based on
the availability of a class-conditional probability function, they are not directly generalizable to
computing explanations for anomaly detectors. Our experiments, however, do evaluate a method,
called Dropout, which is inspired by the approach of [12].

The form of such feature-relevance explanations is similar in nature to our SFEs in that they
provide an ordering on features. However, prior work has not explicitly considered the concept of
sequentially revealing features to an analyst, which is a key part of the SFE proposal for reducing
analyst effort.
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Prior work on feature-based explanations for anomaly detection has focused primarily on com-
puting explanations in the form of feature subsets. Such explanations are intended to specify the
subset of features that are jointly responsible for an object receiving a high anomaly score. For ex-
ample, Micenkova et al. [11] computed a subset of features such that the projection of the anoma-
lous object onto the features shows the greatest deviation from normal instances. Some authors
have referred to this explanation task as “outlying aspects mining” [6, 15]. For example, Duan et al.
developed a method called OAMiner [6], which finds the most outlying subspace where the object
of interest is ranked highest in terms of probability density measure. Vinh et al. proposed a method
called OARank [15], which gives a feature ranking based on their potential contribution toward the
outlyingness of a query point. One issue with these approaches is that the computation of an ex-
planation is independent of the anomaly detector being employed, i.e., they don’t consider the very
anomaly detector that judged the instances as anomalous. Rather, they generate pseudo-training
data and train a completely different model that has no information at all about the original anom-
aly detector. This is contrary to the goal of trying to explain why a particular anomaly detector
judged a particular object to be anomalous. In contrast, the explanation approaches we consider
in this article are sensitive to the particular anomaly detector.

Other work on computing feature-subset explanations [4] developed an anomaly detection sys-
tem called LODI which includes a specialized explanation mechanism for the particular anomaly
detector. A similar approach is considered by Dang et al. [3], where the anomaly detection mech-
anism directly searches for discriminative subspaces that can be used for the purpose of explana-
tion. In contrast, the explanation approaches we consider in this work can be instantiated for any
anomaly detection scheme based on density estimation, which includes a large fraction of existing
detectors.

Existing approaches for evaluating explanation methods in both supervised and unsupervised
settings are typically quite limited in their scope. Often evaluations are limited to visualizations
or illustrations of several example explanations [1, 3] or to test whether a computed explanation
collectively conforms to some known concept in the dataset [1], often for synthetically gener-
ated data. Prior work has not yet proposed a larger scale quantitative evaluation methodology for
explanations, which is one of the main contributions of our work.

3 ANOMALY DETECTION FORMULATION

We consider anomaly detection problems defined over a set of N data points {x1, . . . ,xN }, where
each point xi is an n-dimensional real-valued vector. The set contains a mixture of normal points

and anomaly points, where generally the normal points account for an overwhelming fraction of
the data. In most applications of anomaly detection, the anomaly points are generated by a distinct
process from that of the normal points, in particular, a process that is important to detect for the
particular application. The goal is to detect this process. For example, the data points may describe
the usage behavior of all users of a corporate computer network and the anomalies may correspond
to insider threats.

Since N is typically large, manual search for anomalies through all points is generally not prac-
tical. Statistical anomaly detectors address this issue by seeking to identify anomalies by finding
statistical outliers. The problem, however, is that not all outliers correspond to anomalies, and in
practice an analyst must examine the outliers to decide which ones are likely to be anomalies.
We say that an analyst detects an anomaly when he or she is presented with a potential anomaly
and is able to determine that there is enough evidence that the point is indeed an anomaly. The
success of this approach depends on the anomaly detector’s precision of identifying anomalies as
outliers, and also on the analysts’ ability to correctly detect anomalies. Without further assistance,
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an analyst may need to consider information related to all n features of an anomaly point during
analysis. In many cases, considering this information thoroughly will be impossible and increases
the chance of not detecting anomalies. Something that can be costly in many domains.

4 SEQUENTIAL FEATURE EXPLANATIONS

In order to reduce the analyst’s effort for detecting anomalies, we propose to provide the analyst
with SFEs that attempt to efficiently explain why a point was considered to be an outlier. A length
k SFE for a point is an ordered list of feature indices E = (e1, . . . , ek ), where ei ∈ {1, . . . ,n}. The
intention is that features that appear earlier in the order are considered to be more important to
the high outlier score of a point (e.g., xe1 is the most important). We will use the notation Ei to
denote the set of the first i feature indices of E. Also, for any set of feature indices S and a data
point x , we let xS denote the projection of x onto the subspace specified by S .

Given an SFE E for a point x , the point is incrementally presented to the analyst by first pre-
senting only feature xE1 . If the analyst is able to make a judgement based on only that information,
then we are finished with the point. Otherwise, the next feature is added to the information given
to the analyst, that is, the analyst now sees xE2 . The process of incrementally adding features to
the set of presented information continues until the analyst is able to make a decision. The process
may also terminate early because of time constraints; however, we do not study that case in this
article.

For normal points, the incremental presentation of SFEs may not help the analyst more effi-
ciently exonerate the points. In contrast, for anomalies, it is reasonable to expect that an analyst
would be able to detect the anomalies more easily by considering a much smaller amount of in-
formation than they would have to without the SFE, which should reduce the chance of missed
detections. To clarify further, we assume the analyst has the expertise to decide with certainty
whether an instance is an anomaly from the entire set of features if given enough time. However,
the effort required to determine the anomaly may be large if all the information is shown at the
start. Further, it is assumed that if the minimal set of features responsible for the anomaly are
shown, the effort may be reduced (they see the minimal number of feature interactions). Hence,
we assume that the amount of analyst effort is a monotonically increasing function of the number
of features considered. This motivates measuring the quality of an SFE for a target by the number
of features that must be revealed to an analyst for correct detection. More formally, given an anom-
aly point x , an analyst a, and an SFE E for x , the minimum feature prefix, denoted MFP(x ,a,E), is
the minimum number of features that must be revealed to a, in the order specified by E, for a to
detect x as an anomaly. The analyst may very well consult other information during an investi-
gation. The hope is that simple and good explanations will allow the analyst to efficiently direct
their attention to the key external information.

While MFP provides a quantitative measure of SFE quality, its definition requires access to an
analyst. This complicates the comparison of SFE computation methods in terms of MFP. Section 6
addresses this issue and describes an approach for conducting wide evaluations in terms of MFP.

5 EXPLANATION METHODS

We now consider methods for computing SFEs for anomaly detectors. Prior work on computing
explanations for anomaly detectors has either computed explanations that do not depend on the
particular anomaly detector used (e.g., [11]) or used methods that were specific to a particular
anomaly detector (e.g., [4]). We wish to avoid the former approach since intuitively an explanation
should attempt to indicate why the particular detector being employed found a point to be an
outlier. Considering the latter approach, we seek more general methods that can be applied more
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widely across different detectors. Thus, here, we consider explanation methods for the widely-
studied class of density-based detectors.1

Density-based detectors operate by estimating a probability density function f (x ) (e.g., a Gauss-
ian mixture) over the entire set of N points and treating f as the density over normal points. This
is reasonable under the usual assumption that anomalies are very rare compared to normal points.
Points are then ranked according to ascending values of f (x ) so that the least normal objects ac-
cording to f are highest in the order. Our methods do not assume knowledge of the form of f , but
do require an interface to f that allows for joint marginal values to be computed. That is, for any
subset of feature indices S and point x , we require that we can compute f (xS ). For many choices
of f , such as mixtures of Gaussians, these joint marginals have simple closed forms. If no closed
form is available, then exact or approximate inference techniques (e.g., MCMC) may be employed.

It is worth noting that by considering SFE methods that depend on the anomaly detector being
used, the performance in terms of MFP will depend on the quality of the anomaly detector as
well as the SFE method. For example, consider a situation where the anomaly detector judges an
anomaly point x to be an outlier for reasons that are not semantically relevant to why x is an
anomaly. The SFE for x is not likely to help the analyst to more efficiently determine that x is
an anomaly, since the semantically critical features may appear late in the ordering. While this
is a possibility, it is out of the control of the SFE method. Thus, when designing SFE methods we
will assume that outlier judgements made on f are semantically meaningful with respect to the
application. This is a reasonable assumption since the SFE methods aim to explain the “reasoning”
of the anomaly detector, regardless of whether or not the anomaly detector is bad (e.g., a mismatch
with what a human judges as important). Note that the SFE methods have no information with
which to judge whether the anomaly detector is bad or not, so making the above assumption is
the only reasonable assumption to make without further information. Addressing the mismatch
between an anomaly detector and the semantically interesting anomalies is a fundamental problem
on its own (presumably requiring some form of feedback from the analyst).

We now present the formulation of the SFE objective function and an exact method based on
branch-and-bound search along with our two main classes of greedy SFE methods, which we refer
to as marginal methods and dropout methods.

5.1 SFE Objective Function

We model the SFE objective function from the perspective of an analyst. In particular, we view
the analyst as a Bayesian classifier that assumes normal points are generated according to f and
that anomalies have a uniform distribution u over the support of the feature space, which is a
reasonable assumption in the absence of prior knowledge about the anomaly distribution. Given
a point x , an SFE E, and a number of revealed features i , such an analyst would make the decision

of whether x is an anomaly or not by comparing the likelihood ratio
f (xEi

)

u (xEi
) to some threshold.

Since u is assumed to be uniform, this is equivalent to comparing the joint marginal f (xEi
) to

a threshold. Intuitively, this means that if our goal is to cause the analyst to quickly decide that
x is an anomaly, then we should choose an E that yields small values of f (xEi

), particularly for
small i .

In order to formalize the above intuition into an objective function, we first need to more pre-
cisely specify the thresholds used in the above analyst model. It is important to note that any
choice of threshold on f (xEi

) should depend on i , since larger values of i tend to lead to smaller

1Our methods can actually be employed on the more general class of “score-based detectors” provided that scores can be
computed given any subset of features. For simplicity, we focus on density-based detectors in this article, where the density
function is used to compute scores.
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density values. For this purpose, we introduce the threshold function τi (E,α ), where E is an SFE, i
is an SFE index, and 0 < α < 1 is a percentile parameter. In particular, τi (E,α ) is the α-percentile
density value in the set { f (xEi

) : x ∈ D}, where D is the set of all data instances. That is, a frac-
tion α of the data points will have marginal density f (xEi

) less than τi (E,α ). If α is equal to the
expected rate of anomalies, then this is a natural way to model the analyst detection threshold. In
practice, we do not know the value of α , and thus our approach below will assume a prior p (α ),
which in turn implies a prior over thresholds given by τi (E,α ). In our implementation, we use a
discrete distribution over α that assigns non-zero probability to reasonably small values.

Given the above threshold function, we can now formulate our SFE objective function. For this
purpose, given an instance x , SFE E, and percentile α , we define the Smallest Prefix (SP) of E as
the smallest number i of top features in E that would cause the analyst to detect x using threshold
τi (E,α ), i.e.,

SP(x ,E,α ) = min{i : f (xEi
) < τi (E,α )}. (1)

Note that if no value of i satisfies the inequality, then we define SP(x ,E,α ) = n. Intuitively,
SP(x ,E,α ) is the amount of the modeled analyst’s effort (i.e., the number of features) required
to detect x as an outlier when using SFE E and assuming threshold corresponding to α . Since we
do not know the true value of α , our final objective is the expected value of SP, denoted by ESP,
with respect to p (α ), that is,

ESP(x ,E) =
∑

α

SP(x ,E,α )p (α ), (2)

recalling that we are assuming p (α ) is a discrete distribution. Given this objective function, we
can now specify the SFE optimization problem for a given instance x , which is to compute the SFE
with minimal ESP:

argmin
E

ESP(x ,E). (3)

To understand the computational complexity of this problem, consider the associated decision
problem SFE-Decide.

SFE-Decide: Does there exist an SFE E that satisfies
∑
α

SP(x ,E,α )p (α ) ≤ t .

This problem turns out to be computationally hard.

Theorem 5.1. SFE-Decide is NP-hard.

The proof is in Appendix A. This hardness result motivates us to consider two optimization
approaches described later. First, we consider greedy algorithms that are guaranteed to be
efficient, but without any guarantees with respect to optimality. Second, we design an anytime
branch and bound search, which is guaranteed to find optimal solutions if run long enough and
also provides bounds on the sub-optimality of the solution returned at any time. Our experiments
will compare both types of approaches.

5.2 Greedy Algorithms

5.2.1 Marginal Methods. A natural greedy approach to optimizing the above objective is to
greedily construct an E that attempts to minimize f (xEi

) as a function of i as quickly as possible.
This leads to our first SFE method, called sequential marginal (SeqMarg). The SeqMarg method
adds one feature to the k-length SFE E = (e1, . . . , ek ) at a time, at each step adding the feature that
minimizes the joint marginal density with the previously-selected features. This gives a nice way
to stop if the analyst can decide whether x is anomaly just from the first k features, otherwise we
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need to keep adding a feature at each iteration. More formally, SeqMarg computes the following
explanation:

SeqMarg: ei = arg min
j ∈Ei−1

f (xEi−1 ,x j ),

where S is the complement of set S . SeqMarg requiresO (kn) joint marginal computations in order
to compute an explanation of length k . Note that due to the inherent greediness of SeqMarg, xEi

may not necessarily be the optimal set of i features for minimizing f . Rather, if the goal were to
optimize for a particular value of i , we would need to consider all O (ni ) feature subsets of size i .
However, our problem formulation does not provide us with a target value of i , and thus SeqMarg
offers a more tractable approach that focuses on minimizing f as quickly as possible in a greedy
manner.

It is worth noting that if our objective function were submodular, then SeqMarg would pro-
vide an approximation guarantee [10]. However, our objective function f (xE ) is not a submodular
function of the set E. Intuitively, a submodular function is one that exhibits diminishing returns,
meaning that if E ′ ⊆ E then adding an item to E ′ will improve the objective at least as much as
adding the item to E. Unless we place strict restrictions on f this is not the case in general, due to
interactions between features. For example, consider a density f for which the feature values of
xi and x j are very rare when considered together, but common individually. If we let E ′ = {k } and
E = {k, i}, then it is easy to design f so that adding j to E results in a larger drop in the marginal f
value than adding j to E ′. Because, adding j to E would cause more rarity than adding j to E ′ even
though E ′ is a subset of E. Indeed using this type of construction it is easy to construct examples
where SeqMarg can be arbitrarily far from optimal. However, in practice we find that it tends to
work very well across a wide range of problems.

In addition to SeqMarg we also consider a computationally cheaper alternative, called indepen-

dent marginal (IndMarg), which only requires the computation of individual marginals f (xi ). This
approach simply selects an explanation E for x by sorting the features in increasing order of f (xi ).
This only requires O (n) marginal computations for computing an explanation of any length. In-
dMarg offers a computationally cheaper alternative to SeqMarg, but fails to capture joint feature
interactions. For example, SeqMarg will select ei in a way that optimizes the joint value when com-
bined with previous features Ei−1. Instead, IndMarg ignores interactions with previously-selected
features. Thus, IndMarg serves as a baseline for understanding the importance of accounting for
joint feature interactions when computing explanations.

5.2.2 Dropout Methods. The next two methods are inspired by the work of Robnik-Sikonja and
Kononenko [12] on computing feature-relevance explanations for supervised classifiers. In their
work, the relevance score for a feature is the difference between the classification score when the
feature is provided to the classifier and the classification when the feature is omitted (“dropped
out”). The analogous approach for anomaly detection is to score features according to the change
in the density value when the feature is included and when the feature is not included, or marginal-
ized out. This yields the first dropout method, referred to as independent dropout (IndDO): given
a point x , each feature is assigned a score of f (x − xi ) − f (x ), where we abuse notation and de-
note the removal of xi from x by x − xi . Intuitively, features with larger scores are ones that make
the point appear most normal when removed. The SFE E is then obtained by sorting features in
decreasing order of score.

We can also define a sequential version of dropout, by following the same recipe we considered
for IndMarg versus SeqMarg. Let the sequential dropout (SeqDO) be defined as follows:

SeqDO: ei = arg max
j ∈E1:i−1

f (xEi
− x j ).
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ALGORITHM 1: Branch and Bound Search

Input: x ∈ Rd : input instance, d : dimension, MAX: maximum number of nodes to explore
Output: SFE for x
root := CreateEmptyNode (x ) // Creates node with empty feature list.
Q .Insert (root )
BestNode := root
NodesExplored := 0
while Q .NotEmpty () AND NodesExplored < MAX do

NodesExplored := NodesExplored + 1
node := Q .GetSmallestUpperBoundNode () // Expand node with best upper bound.
if node .LB < bestNode .UB then

for f ∈ (1 : d ) AND f � node .RankedFeatureList do
child := copy (node )
child .AppendFeature ( f )
child .UpdateBounds ()
if BestNode .UB > child .UB then

BestNode := child
end

Q .Insert (child )
end

end

end

return BestNode .RankedFeatureList

This approach requires the same number of marginal computations as SeqMarg. This algorithm
can be viewed as a dual of SeqMarg in that it measures the contribution of feature sets according
to how much more normal a point looks after their removal, whereas SeqMarg measures how
abnormal a point looks with only those features included.

5.3 Branch and Bound Search

We now develop an optimal algorithm for optimizing ESP based on branch and bound search. This
algorithm will search through the exponentially large space of SFEs, while attempting to soundly
prune as much of the space from consideration as possible. Ideally, the pruning will result in finding
the optimal SFE very quickly, though in the worst case the procedure may need to enumerate an
exponentially large set of SFEs. This worst case behavior is unavoidable under standard complexity
assumptions due to the NP-hardness of the optimization problem. Importantly, our branch and
bound procedure can be run in an “anytime” mode, where it can be terminated at any point to
return the best solution found so far.

The branch and bound search operates over a rooted tree, where a node at depth i is labeled
by a length i feature sequence Ei , which represents a partial SFE. Since there will be a one-to-one
correspondence between tree nodes and feature subsequences, we will abuse notation and refer to
nodes by the corresponding sequences. The root of the tree is the null sequence E0, and the leaves
of the tree are complete SFEs (length n sequences). The children of a node Ei at depth i are all
subsequences of length i + 1 that extend Ei by one feature that is not already in Ei . Based on this
search space definition, the descendant leaves of a node Ei , denoted by l (Ei ), are all SFEs that have
Ei as a prefix.

The key idea of branch and bound search is to view each node Ei as representing the set of
possible solutions l (Ei ) and to compute upper and lower bounds on the objective value for those
possible solutions. In particular, the upper (lower) bound computed for a node Ei , denoted byU (Ei )
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(L(Ei )), are values that bound the ESP of any SFE in l (Ei ) from above (below). Given these bounds,
we can prune away a node Ei and all of its descendants if its lower bound L(Ei ) is greater than the
upper bound U (E ′) of some other node E ′ already considered during the search. This is a sound
pruning strategy since it must be the case that l (E ′) contains an SFE whose ESP is at least as good
as the best SFE in l (Ei ) (recall that smaller ESP is better). Later, we specify the search strategy for
expanding nodes, followed by a description of the lower- and upper-bound computations. Pseudo
code for the overall search is given in Algorithm 1.

Search Strategy. The search iteratively expands a set of fringe nodes, which is initialized to
the single root node E0 (null sequence). This set of nodes is maintained in a priority queue in
Algorithm 1. At any point in the search, we maintain the upper bound for each fringe node as well
as the best (smallest) upper boundU ∗ discovered so far during the search. Each iteration begins by
selecting the fringe node E with the smallest upper bound, and then computing the corresponding
lower bound L(E). If L(E) ≥ U ∗, then we remove/prune E from the set of fringe nodes, which effec-
tively prunes all SFEs in l (E) from consideration. If L(E) < U ∗ then it is possible that an SFE in l (E)
is optimal and we expand E by adding all of its children to the set of fringe nodes and removing E.
The upper bound for each newly added child is computed, and the iteration proceeds. Importantly,
as described below, our upper bound computation produces an SFE that achieves the upper bound
value. Thus, at any point our search also keeps track of the best such SFE discovered so far.

The algorithm terminates and returns the best SFE found so far when a specified limit on the
number of expanded nodes is reached. The algorithm will also terminate if it finds an SFE S whose
ESP value is at least as good as the lower bound of any fringe node. In that case, S is guaranteed
to be an optimal SFE. The algorithm will always terminate in finite time since there are a finite
number of SFEs, and each iteration expands a new node of the search tree.

Upper Bound Computation. We compute the upper bound for a node Ei by running the greedy
SeqMarg algorithm (Section 5.2) starting with Ei in order to select the remaining features of a
complete SFE. The ESP (Equation (2)) computed for the resulting SFE is taken to be the upper
bound since the optimal SFE under Ei will be no worse (smaller ESPs are better).

Lower Bound Computation. The lower bound for node Ei must bound the ESP of any SFE in the
set l (Ei ). Our first step to such a bound is based on expanding the definition of ESP according to (2)
and interchanging the order of minimization over SFEs and summation/expectation over α values

min
E∈l (Ei )

ESP(x ,E) = min
E∈l (Ei )

∑
α

SP(x ,E,α )p (α ) ≥
∑

α

min
Eα ∈l (Ei )

SP(x ,Eα ,α )p (α ). (4)

The inequality follows due to the fact that the right-hand side of the inequality minimizes the SP
for each value of α , rather than constraining the SFE to be the same for each value of α as in the
original optimization problem. Unfortunately, finding the optimal Eα for each term of the right-
hand side is still computationally intractable due to the need to enumerate over SFEs in l (Ei ). Thus,
we instead compute an efficiently computable lower bound for each such term by restricting our
attention to only the feature sequences in Ei . In particular, consider a single term

tα = min
Eα ∈l (Ei )

SP(x ,Eα ,α ) (5)

noting that Ei is a prefix of all SFEs under consideration. If tα = j ≤ i then there is a j ≤ i such that
f (xEj

) < τj (Ei ,α ), and we can easily compute this value by considering each j ≤ i . If, on the other
hand, tα > i , then there will not be any j ≤ i , such that f (xEj

) < τj (E,α ), which we can easily test.
In this case, we can lower bound the value of tα by i. Putting this all together, we use the following
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Table 1. Summary of the Benchmark Datasets

Mother set

Original
problem

type
# of

features
# of

benchmarks

# of points per
benchmark

(range)

# of anomaly
per benchmark

(range)

Magic.gamma Binary 10 1600 600–6180 5–618
Skin Binary 3 1200 10–9323 1–932

Shuttle Multiclass 9 1600 3570–9847 8–984
Yeast Multiclass 8 1600 70–1000 1–97

Abalone Regression 7 1600 580–2095 1–209
Concrete Regression 8 1200 190–1000 1–51
Landsat Multiclass 36 1600 561–5102 4–510
Particle Binary 50 400 371–8563 7–857

lower bound on each term:

tα ≥ t̂α = min({j : j ≤ i, f (xEj
) < τj (E,α )} ∪ {i}), (6)

and we compute the overall lower bound as
∑

α t̂αp (α ).
It is important to note that our overall search procedure is guaranteed to do no worse than

SeqMarg. This is because the upper bound computation for the root node exactly corresponds to
running SeqMarg starting from the empty sequence. Thus, the best SFE maintained by the search
will always be at least as good as that produced by SeqMarg.

6 FRAMEWORK FOR EVALUATING EXPLANATIONS

There are at least two challenges involved in evaluating anomaly-explanation methods. First, com-
pared to supervised learning, the area of anomaly detection has many fewer established benchmark
datasets, particularly benchmarks based on real-world data. Second, given a benchmark dataset,
it is not immediately clear how to quantitatively evaluate explanations, since the benchmarks do
not come with either ground truth explanations or analysts.

Here, we describe an evaluation framework that addresses both issues. We address the first
issue by drawing on recent work on constructing large numbers of anomaly detection benchmarks
based on real-world data. We address the second issue by using supervised learning to construct a
simulated analyst that can be applied to quantitatively evaluate our explanations in terms of MFP.
We expand on both of these points as follows.

6.1 Anomaly Detection Benchmarks

Recent work [7] described a methodology for systematically creating anomaly detection bench-
marks from supervised learning benchmarks (either classification or regression). Given the huge
number of real-world supervised learning benchmarks, this allows for a correspondingly huge
number and diverse set of anomaly detection benchmarks. Further, these benchmarks can be cre-
ated to have controllable and measurable properties, such as anomaly frequency and “clustered-
ness” of the normal and anomalous points. We briefly sketch the main idea. Given a supervised
classification dataset, called the mother set, the approach selects one or more of the classes to
represent the anomaly class, with different choices giving rise to different properties of the anom-
aly class. The union of the other classes represents the normal class. Individual anomaly detection
benchmarks are then created by sampling the normal and anomaly points at specified proportions.
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Fig. 2. Analyst Certainty Curves. These are example curves generated using our simulated analyst on anom-

alies from the Abalone benchmark using SFEs produced by SeqMarg. The x-axis shows the index of the fea-

ture revealed at each step and the y-axis shows the analyst certainty about the anomalies being normal. The

leftmost curve shows an example of where the analyst gradually becomes certain that the point is anoma-

lous, while the middle curve shows more rapidly growing certainty. The rightmost curve is an example of

where the analyst is certain of the anomaly after the first feature is revealed and remains certain.

Table 1 gives a summary of the benchmarks from Emmott et al. [7] used in our experiments.
For example, the UCI dataset shuttle was used as a mother set to create 1600 distinct anomaly
detection benchmarks. The number of points in the shuttle benchmarks range from 3570 to 9847.
The number of anomalies ranges from 8 to 984.

6.2 Simulated Analyst

We consider modeling an analyst as a conditional distribution of the normal class given a sub-
set of features from a data point. More formally we model the analyst as a function A(x , S ) =
P (normal | xS ), which returns the probability that point x is normal considering only the features
specified by the set S . We describe how we obtain this function in our experiments later. Given this
function, a point x , and an SFE E for x , we can generate an analyst certainty curve that plots the
analyst’s certainty after revealing i features, that is,A(x ,Ei ) versus i . Figure 2 shows an example of
three analyst curves from our experiments using our simulated analysts on a benchmark computed
from the UCI Abalone dataset. Each curve corresponds to a different anomaly in the dataset using
explanations computed by SeqMarg. We see that the different anomalies lead to different rates at
which the analyst becomes certain of the anomaly, that is, certain that the point is not normal.

Recall that our proposed quality metric MFP(x ,a,E) measures the number of features that must
be revealed to analyst a according to SFE E in order for a to detect an anomaly x . Evaluating this
metric requires that we define the conditions under which the analyst detects x . We model this by
associating an analyst with a detection threshold τ ∈ [0, 0.5] and saying that a detection occurs
if A(x ,Ei ) ≤ τ , that is, the probability of normality becomes small enough. We will denote this
analyst by a(τ ). Given an a(τ ) we can then compute the MFP for any anomaly point by recording
the number of features required for the analyst certainty curve to first drop below τ .

Of course, there is no a priori basis for selecting a value of τ . Thus, in our experiments, we con-
sider a discrete distribution over values for τ , P (τ ), which models a range of reasonable thresholds.
Given this distribution, we report the expected MFP—the expected value of MFP(x ,a(τ ),E)—as the
quantitative measure of SFE E for anomaly x . In our experiments, we define P (τ ) to be uniform
over the values 0.1, 0.2, and 0.3, noting that our results are consistent across a variety of reasonable
choices for this distribution.

It remains to specify how we obtain the analyst function A(x , S ). Since our anomaly detection
benchmarks are each derived from a mother classification dataset [7], we can construct a train-
ing set over those points for the anomaly and normal classes. Basically, a mother training set is a
conversion from some well known classification and regression datasets by following some rea-
sonable criteria described in [7]. An anomaly detection benchmark is then created by subsampling
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instances that satisfy some criteria, such as difficulty level, anomaly rate, and so on. Hence, the
mother training set actually contains all the information for that particular dataset. Given this
training set, one approach to obtaining the analyst would be to learn a generative model, or joint
distribution P (normal,x ), which could be used to compute A(x , S ) by marginalizing out features
not included in s . However, such generative models tend to be much less accurate in practice com-
pared to discriminative models. On the other hand, learning a discriminative model P (normal | x )
does not directly support computing the probability for arbitrary subsets of x as we require. While
heuristics have been proposed for this purpose (e.g., Robnik-Sikonja and Kononenko [12]) we have
found them to be unreliable when applied widely. Thus, in this work, we follow a brute-force ap-
proach. We simply pre-learn an individual discriminative model for each possible subset of features
up to a maximum size k . Evaluating A(x , S ) then simply requires evaluating the model associated
with the subset S .

When the number of features or number of data points is very large, it may not be possible
to pre-learn all possible subsets. In such cases, one option is to learn and cache models on the
fly as they are needed during evaluation (each model would be learned only once). We used this
approach for the KDD-Cup results reported in our experiments.

In all of our experiments, we use the Regularized Random Forests (RRFs) [5] as the classifier
for the analyst model. The RRF model was selected for two primary reasons. First, RRFs are well
known to provide high accuracies that are competitive with the state of the art across a wide range
of classification problems [8]. Second, RRFs are relatively efficient to train, which is important to
our study, since we must train one RRF for each possible subset of features (up to some maximum
size). We trained RRFs composed of 500 trees using 10-fold cross-validation in order to tune the
RRF regularization parameters.

It is worth noting that our evaluation framework is potentially sensitive to the choice of analyst
model, since different models will have different biases. It was beyond the practical scope of this
first study to replicate all experiments using a qualitatively different model.

7 EMPIRICAL EVALUATION

We now present our empirical evaluation on anomaly detection benchmarks from Emmott et al. [7]
and the commonly used KDDCup anomaly detection benchmark.

7.1 Anomaly Detector

For all of our experiments, we have chosen to use the Ensemble Gaussian Mixture Model (EGMM)
as the anomaly detector. This detector was first described in Emmott et al. [7] and was shown to
be a competitive density-based approach across a wide range of benchmarks. EGMM is based on
learning a density function f (x ) represented as an ensemble of Gaussian mixture models (GMMs).
The approach independently learns M GMM models by training each one using the Expectation-
Maximization (EM) procedure on bootstrap replicates of the dataset. Then, it discards the low-
likelihood GMMs (if any) and retains others based on a pre-specified threshold. The number of
components of the GMMs is varied across the ensemble. In our experiments, the ensembles in-
cluded 45 GMMs, 15 each using 3, 4, and 5 components. The final EGMM density f (x ) is simply
a uniform mixture of the densities of the retained GMMs. The EGMM approach addresses at least
two pitfalls of using single GMM models. First, EM training can sometimes produce poor models
due to bad local optima. Second, it is difficult to select the best number of components to use for
a single model. EGMM gains robustness by performing model averaging over the variations.

One advantage of using the EGMM model is that it is straightforward to derive closed forms
for the marginal density computations required by our explanation methods. In particular, the
overall EGMM density f can be viewed as a single large GMM model containing a mixture of

ACM Transactions on Knowledge Discovery from Data, Vol. 13, No. 1, Article 1. Publication date: January 2019.



1:14 Md A. Siddiqui et al.

Fig. 3. The bars show the Expected Smallest Prefix (ESP) achieved by different methods averaged across top

10% highly ranked ground truth anomalies in all the benchmarks; 95% confidence intervals are also shown.

all components across the ensemble. Since individual Gaussians have simple closed forms for
marginal densities [2], we can easily obtain closed forms for the mixture. It is worth noting that
closed forms can also be derived for EGMM marginals when the data points are transformed by
linear projections to reduce dimensionality (e.g., principle component analysis).

Another point to note is that we did not consider discrete-valued features directly, primarily
because we used anomaly detectors that expected numeric features. However, our approaches are
only dependent on the marginal distributions of the original density f . If f is a joint distribution
over both continuous and discrete variables and we can get any marginal of f on demand, our
methods apply directly without modification.

7.2 Empirical Comparison of Greedy Versus BaB

Before presenting our full evaluation, we first compare the performance of greedy versus BaB
(Branch and Bound from Section 5) with respect to optimizing ESP (Equation (3)). For this experi-
ment, we need to specify the following two parameters: the number of nodes to expand for BaB and
a distribution over percentile values α (1–100) used to define ESP. We assign the number of nodes
to expand as 100 (hence calling the method BaB.100), and choose an uniform prior probability over
the first 10 values of α and others as 0, i.e.,

P (α ) =

{
1/10 if 1 ≤ α ≤ 10
0 otherwise

.

The idea is to put higher emphasis on the low-percentile values as they should convey more
accurate signals than others. Finally, we compute the best ESP (BaB.100) and the optimal ESP
(BaB.complete) for each of the highly ranked anomaly points and average across the datasets,
respectively.

Similarly, we compute the ESP of Equation (2) using the SFEs obtained from the greedy methods
(SeqMarg, IndMarg SeqDrop, and IndDrop) of Section 5.2. The average of these ESPs are then
plotted along with the ESPs of the BaB methods in Figure 3. We first observe that BaB.complete
and BaB.100 achieve nearly identical results. This shows that a relatively small amount of search
is needed by our BaB procedure to achieve nearly optimal ESP. Thus, in our full evaluation
(Section 7.3), we will focus on the computationally cheaper BaB.100 as the representative BaB
method. Second, we observe that the greedy SeqMarg method achieved very close ESP to the BaB
methods with the exception of the Yeast and Shuttle benchmarks. The other greedy methods more
frequently perform significantly worse than the BaB methods. This shows that SeqMarg could be
expected to be a computationally efficient and effective alternative to BaB for optimizing ESP.
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7.3 Evaluation on Benchmark Datasets

We run our evaluation on anomaly detection benchmarks from Emmott et al. [7], derived from
seven UCI mother sets. A summary of the benchmarks are given in Table 1. There are over 10,000
benchmarks in total, which contain a number of points ranging from 10 to 9847 and a number of
anomalies ranging from 1 to 984. An EGMM model was fit for each of the benchmarks to serve
as the anomaly detector, and RRF models were trained for each mother set on all possible feature
subsets. For this first part of our evaluation, we have chosen to focus on benchmarks with rela-
tively small dimensionality in order to allow for a large scale study, which requires training large
numbers of EGMM models (over 10,000) and RRF analyst models. All data from these experiments,
including the analysts’ models, will be made publicly available.

We evaluated seven methods for computing SFEs. These included the following five methods
from Section 5: SeqMarg, IndMarg, SeqDO, IndDO, and BaB.100 (branch-and-bound was restricted
to 100 nodes of exploration). In addition, we evaluated a random explanation method. In the ran-
dom case, we report the average performance across 100 randomly generated SFEs. Finally, in
order to provide a lower bound on attainable performance (lower MFP is better), we consider an
optimal-oracle method, OptOracle. This method is allowed access to the simulated analyst and for
each number of features i computes the optimal feature subset of size i . More formally, for each
value of i , OptOracle finds the feature subset Si that minimizes the analyst’s conditional probabil-
ity P (normal | xSi

). The MFP achieved by OptOracle for an anomaly x , given a particular analyst
threshold τ (recall Section 6), is the minimum value of i such that P (normal | xSi

) < τ . Note that
OptOracle is not constrained to produce “sequential explanations”—rather, OptOracle can produce
an Si that does not necessarily contain Si−1. This gives OptOracle an additional advantage com-
pared to the other methods which are constrained to produce SFEs. Clearly, OptOracle represents
an optimistic bound on the performance of any SFE method that is evaluated with respect to the
simulated analyst.

For each of the 10,000 benchmarks, we used the corresponding EGMM model to rank the
points. For the true anomaly points ranked in the top 10%, we computed SFEs using each of the six
methods. This choice is an attempt to model the fact that, in actual operation, only highly ranked
anomalies will be presented to the expert. Note that while developing and evaluating explanation
methods that target false positives is certainly an interesting direction, it is a large enough problem
to warrant its own entire study. For that problem, the objective is presumably one of exoneration
where the goal for the explanation system is to accurately determine when revealing additional
features of an SFE is unlikely to raise further suspicion according to its model. This requires new
developments and new approaches for evaluation. Finally, the expected MFP was computed for
each SFE using a distribution over analyst thresholds that was uniform over the values 0.1, 0.2,
and 0.3. For each mother set, we then report the average MFP across the anomalies derived from
that mother set. These average MFPs are shown in Figure 4 along with 95% confidence intervals.

We first note that our observations below are not sensitive to the choice of what percentage
of the top anomalies to focus on. While these results focus on the top 10%, we have also com-
piled results for other percentage points including using all anomalies. The main observations are
qualitatively similar across all of these choices.

Comparison to Random and OptOracle. We observe in Figure 4 that all of the SFE methods out-
perform random explanations and often do so by a large margin. Comparing to OptOracle we see
that, for three benchmarks—concrete, yeast, and wine—the lower bound provided by OptOracle
is significantly better than our best SFE method. This gap could be due to either of the following:
(1) sub-optimal SFE computations, (2) a poor match between the anomaly detector’s notion of
outlier versus the analyst’s notion of anomaly, or (3) the fact that OptOracle is not constrained to
output sequential explanations. We will investigate this further as follows (Section 7.4).
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Fig. 4. Performance of explanation methods on benchmarks. Each group of bars shows the performance of

the six methods on benchmarks derived from a single mother set. The bars show the expected MFP averaged

across anomalies in benchmarks for the corresponding mother set; 95% confidence intervals are also shown.

For the remaining four mother sets, we see that the marginal methods are quite close to the
lower bound of OptOracle, though there is still some room for improvement. Finally, it is worth
noting that OptOracle is able to achieve MFPs of close to 1 for most of the mother sets. Thus, on
average, for these datasets, a single feature is sufficient to allow for correct analyst detections.

Comparison to Branch and Bound. We now compare the greedy methods to BaB.100, which
as described previously attempts to optimize ESP as a surrogate for the true-but-unknown MFP
objective. Figure 4 shows the performance of these methods, and interestingly we see that the
best greedy method significantly outperforms BaB.100 on the Yeast and Shuttle benchmarks. A
potential reason for this is due to a mismatch between the ranking of points by the anomaly
detector and the ranking of points by the simulated analysts. That is, there is a mismatch between
statistical outliers and semantic anomalies. Since BaB.100 works harder than the greedy methods
to optimize the ESP objective, the impact of this mismatch can be amplified. This hypothesis
is supported by Figure 3, where we see that Yeast and Shuttle are the two benchmarks where
BaB.100 has a significantly better ESP than the greedy methods. We investigate the issue further in
Section 7.4.

Independent Versus Sequential. It is reasonable to expect that the sequential version of the mar-
ginal and dropout methods will outperform the independent versions. This is because the sequen-
tial versions attempt to account more aggressively for feature interaction when computing SFEs,
which requires additional computation time. However, we see that overall there is very little dif-
ference in performance between the independent and sequential methods. That is, SeqMarg and
IndMarg (as well as SeqDO and IndDO) achieve nearly identical performance. The only excep-
tion is in magic.gamma where there is a small—but statistically significant—advantage (according
to a paired t-test) of SeqMarg over IndMarg. One possible explanation for these results is that
feature interactions are not critical in these domains for detecting anomalies. This explanation is
supported by the fact that OptOracle is able to achieve average MFPs close to one.

Marginal Versus Dropout. Recall that the marginal and dropout methods are dual approaches.
Marginal evaluates a set of features in terms of how abnormal those features alone make a point
appear, while dropout evaluates a set by the increase in normality score when the features are
removed. We see that overall the marginal methods are never significantly worse than dropout and
significantly better on abalone, magic.gamma, shuttle, and skin. The difference is particularly
large on shuttle, where the marginal methods are close to OptOracle, and the dropout methods
are closer to random.
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Fig. 5. Performance of explanation methods on benchmarks when using an oracle anomaly detector. Each

group of bars shows the performance of the six methods on benchmarks derived from a single mother set.

The bars show the expected MFP averaged across anomalies in benchmarks for the corresponding mother

set; 95% confidence intervals are also shown.

One possible explanation is that we have observed that often dropout will produce a “weaker
signal” compared to marginal when making early decisions. For example, when considering single
features, the differences in scores produced by dropout for those features are often much smaller
than the differences produced by marginal. This can make dropout less robust for early decisions,
which are the most important ones for achieving small MFP scores. Recall that the dropout method
was inspired by prior work on explanations for supervised learning. The results here suggest that
it is worth investigating adaptations of marginal to the supervised setting.

7.4 Comparing Methods with Oracle Detectors

Since the SFE methods make their decisions based on the anomaly detector’s density function f ,
the results above reflect both the SFE methods and the quality of the detector. Here, we attempt
to factor out the performance of the SFE methods themselves by supplying the methods with an
oracle anomaly detector. To do this, we simply replace the use of f with the simulated analyst’s
conditional probability function P (normal | xS ), which we can compute for any feature subset S .
For example, the first feature selected by SeqMarg is the xi that minimizes P (normal | xi ). Note
that this is also the first feature that would be selected by OptOracle. Unlike OptOracle, however,
SeqMarg is sequentially constrained and will select the second feature as the one that works best
when combined with the first selected feature.

Figure 5 shows results for all methods using the oracle detectors. We use a ‘*’ to indicate that a
method is using an oracle detector, for example, SeqMarg* is the oracle version of SeqMarg.

Comparison to OptOracle. The primary observation is that SeqMarg* performs nearly identi-
cally to OptOracle in all but one domain. Any difference between SeqMarg* and OptOracle would
reflect the loss in performance due to requiring sequential explanations, which is required for
OptOracle, and/or the greedy optimization. For these datasets, there is little to no loss. This is
good news, since the motivation for considering sequential explanations is to reduce the analyst’s
effort. In particular, the sequential constraint means that the analyst is shown an incrementally
growing set of information. Rather, without the constraint, OptOracle could potentially show com-
pletely different sets of features from step to step, which is arguably less desirable from a usability
perspective.

Comparison to Branch and Bound. The performance of BaB.100 is significantly improved in
comparison with greedy methods when using the oracle detectors. This provides evidence that
the primary reason for the poor performances of BaB.100 above was the mismatch between the
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anomaly detector ranking of points and that of the analyst. However, we still see that BaB.100 is
usually slightly outperformed by the best greedy method SeqMarg and significantly outperformed
on Yeast. A likely reason for this is that BaB.100 is optimizing a surrogate objective ESP, rather
than the true objective MFP. When there is a disparity between these objectives, more aggressive
optimization can be counter productive. Note that in Section 7.2, we did validate that BaB.100 does
optimize its surrogate objective effectively compared to the greedy methods.

Independent Versus Sequential. Here, we see that SeqMarg* is often outperforming IndMarg*
and sometimes by significant amounts. This is in contrast to the results obtained when using
EGMM as the anomaly detector. This indicates that reasoning about feature interactions, as done
by SeqMarg*, can be important with higher-quality anomaly detection models. This leaves open
the question of whether we will be able to observe this advantage when using non-oracle anomaly
detection models on realistic benchmarks.

Dropout Versus Marginal. The marginal methods show consistently better performance when
using oracle detectors. The performance gap is quite large in several of the benchmarks. This
provides evidence that the marginal approach is generally a better way of computing SFEs. Again,
we hypothesize that this is due to the “weak signal” during early decisions observed for the dropout
method.

7.5 Evaluation on High-Dimensional Datasets

We now consider the effectiveness of the proposed methods on larger-dimensional datasets. For
large dimensions, computing the analyst models by learning one model for each feature subset (as
done above) is computationally prohibitive due to the exponential number of feature subsets. How-
ever, most such subsets are not useful for evaluation especially those that contain many features
since, in practice, it is rare for anomalous behavior to be a result of large numbers of interact-
ing features. In addition, larger subsets are not easy to consume and process by human analysts.
Hence, we focus on evaluating SFEs involving only the top k ≤ 10 features instead of all d features.

In order to examine the effects of a large number of dimensions, we choose three datasets: land-
sat, particle, and KDDcup99 having dimensions 36, 55, and 45, respectively. Even after imposing
the constraint of SFE computation for k ≤ 10 features, the restricted BaB method (BaB.100) took
hours to finish and sometimes exceeded the memory limit. This is because at each node expansion
during branch and bound search we need to calculate the upper bound of the node. This requires
marginalizing the model, which is costly due to the large number of parameters and having to com-
pute the density for all the instances. Hence, we limit the execution of this method to 15 minutes
(hence, calling it BaB.15) and use the best SFE found after the time limit is reached.

For the KDDcup99 intrusion detection benchmark [9], we usek = 10 and consider a subset of the
data containing instances involving http service only. The resulting benchmark contains approx-
imately 620K points with approximately 4K anomalous points representing network intrusions.
We again employed EGMM as the anomaly detector. It was infeasible to train a simulated analyst
on all feature subsets so we followed the adaptive approach described in Section 6, where only
the subset of models required during the evaluation process was learned and cached. Overall this
resulted in approximately 7.5K RFF models being trained. In this domain, the EGMM model was
quite effective and ranked all anomalies very close to the top of the ranked list. Thus, we evaluate
on all anomalies in this domain.

The results for KDDcup99 are shown in Figure 6. It is clear that the marginal methods are sig-
nificantly better than the dropout methods. In particular, both SeqMarg and IndMarg achieve an
average MFP close to one, which is the smallest possible. This indicates that the combination of
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Fig. 6. Performance of different explanation methods on some high-dimensional benchmark datasets; 95%

confidence intervals are also shown.

EGMM and marginal explanations is very effective in this domain. In particular, the simulated ana-
lyst only needed to be shown a single feature on average in order to correctly detect the anomalies.

For the landsat and particle datasets, we use k = 6, and evaluate with respect to anomalies
ranked in the top 10%. The result is shown in Figure 6. The IndDO and SeqDO are similar for
both of the datasets. SeqMarg is better than IndMarg in both cases and also better than IndDO and
SeqDO. SeqMarg performs equal to or better than the BaB method. For the BaB method, 31% of
the anomaly points from landsat and 70% of the points from particle are solved for the optimal
ESP value within the 15-minute time limit. Although the majority of the anomaly points in the
particle dataset reached optimal solution, the performance is slightly worse than SeqMarg. This
could be due to the reason already discussed in Section 7.3. Overall, the relative performance of
the dropout and marginal methods are very similar to the relative performance observed earlier.
The marginal methods tend to outperform the dropout methods.

We again hypothesize that the much weaker performance of the dropout methods is due to the
“weak signal” they provide for early decisions. This problem is only amplified in the context of
larger numbers of features as is the case for the KDDCup data.

8 MAIN OBSERVATIONS AND RECOMMENDATION

The main observations from the above experiments can be summarized as follows.

—All of the introduced SFE methods significantly outperformed randomly generated SFEs.
—The marginal methods were generally no worse, and sometimes significantly better than

the dropout methods.
—When using the EGMM anomaly detector, we observed little to no difference between the

performance of sequential versus independent methods.
—When using the oracle anomaly detector, SeqMarg significantly outperformed IndMarg,

which suggests that, in general, sequential methods can outperform independent methods.
—While the BaB methods were more effective at optimizing ESP in many cases, this did not

translate to outperforming the best greedy method with respect to MFP.

Overall, based on our results, SeqMarg is the recommended method for computing SFEs among
the methods we studied.
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9 SUMMARY AND FUTURE WORK

This article introduced the concept of SFEs for anomaly detection. The main motivation was to
reduce the amount of effort required of an analyst to correctly identify anomalies. We described
several methods for computing SFEs and introduced a new framework that allows for large-scale
quantitative evaluation of explanation methods. To the best of our knowledge, this is the first such
large-scale evaluation of explanation methods for anomaly detection. Our experiments indicated
that, overall, the SeqMarg method for computing SFEs is the preferred method among those intro-
duced in this article.

An interesting point of future work will be to explore this framework for a wider range of anom-
aly detection models and simulated-analyst models. This could include comparing the relative ef-
fectiveness of our generic approaches for computing SFEs with approaches that are specifically
designed for particular anomaly detectors. One surprising observation from our results is that our
more computationally intensive branch-and-bound approach never outperformed our best greedy
approach in actual evaluations. We hypothesized that this was due to the potential mismatches
between, first, the anomaly detector and analyst model, and second, the optimization objective,
ESP, and the evaluation metric, MFP. Optimizing more aggressively in light of these mismatches
appears to be counter productive. An interesting point of future work will be to investigate alter-
native optimization objectives and to better understand the surprising effectiveness of the greedy
SeqMarg method.

Another important direction for future work will be to conduct qualitative evaluations using
human subjects. This is a challenging direction due to the need to find subject matter experts that
are available to take part in evaluation trials. Alternatively, human studies could be conducted
using synthetic benchmarks that are constructed in a way that allows regular human subjects to
be easily taught the domain properties. These subjects would then be our expert analysts. While
this second approach is less realistic, it would allow for a wider-scale evaluation that could produce
quantitative results in addition to the qualitative observations.

APPENDIX

A NP-HARDNESS OF SFE-DECIDE

We now prove that the decision problem, SFE-Decide, which corresponds to the optimization
problem in Equation (3), is NP-hard.

Proof. To prove that SFE-Decide is NP-hard, we reduce the well known NP-Complete problem
Vertex Cover to SFE-Decide.

Vertex Cover: Does there exist a vertex cover of size ≤ k in graph G = (V,E)

SFE-Decide: Does there exist an SFE E for instance x and density f that satisfies

∑
α

min{i : f (xEi
) < τ (Ei ,α )}p (α ) ≤ t .

Reduction. The basic idea of the reduction is to encode the graph G = (V,E) into the instance
x as a vertex-edge incidence matrix. We view x as a |V | dimensional feature vector with each
feature denoted by xi . Each feature is an |E |-bit integer where bit j of feature i , denoted by xi j , is
defined as

xi j =

{
1 if vertexVi is incident on edge Ej

0 otherwise.
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Since x is integer-valued, we construct the marginal distribution function f (xs ) as a discrete dis-
tribution (or probability function) as follows:

f (xs ) =
⎧⎪⎨
⎪
⎩

1
C

i f
∑
j
I(
∑
i ∈s

xi j > 0) < |E |

0 otherwise.

Here,C is a normalizing constant, and I is an indicator function. Intuitively, f (xs ) is defined to be
a uniform distribution over all possible values of xs that correspond to a vertex cover of the graph.
To see this, note that the summation

∑
j I(
∑

i ∈s xi j > 0) is computing the number of edges covered
by the set of vertices in s . We say a value of xs is valid if this summation exactly equals the number
of edges.

Continuing the reduction we set t = k , τ (s,α ) = 1
C

and

p (α ) =

{
1 i f α = α0

0 otherwise

where α0 is a constant. Now, we observe that by the construction of p (α ) as a deterministic distri-
bution, SFE-Decide no longer involves a summation over α and can be simplified to the following
problem:

Does there exist an SFE E satisfying min{i : f (xEi
) < 1

C
} ≤ t .

Now, we first show that a vertex cover of size ≤ k in G → existence of an SFE E satisfying min{i :
f (xEi

) < 1
C
} ≤ t . Suppose, |s | ≤ k is the set of vertices forming the vertex cover in G. Then, by

construction
∑

j I(
∑

i ∈s xi j > 0) = |E |, i.e., f (xs ) = 0. We can now construct an SFE E by setting
the prefix Ei = s and filling the rest of the features arbitrarily with the remaining features. Its
easy to see that such an SFE E satisfies min{i : f (xEi

) < 1
C
} ≤ t since |Ei | ≤ t . Hence, E is an SFE

corresponding to the vertex cover s .
We now prove the other direction: Existence of an SFE E satisfying min{i : f (xEi

) < 1
C
} ≤ t

→ existence of a vertex cover of size ≤ k in G. Since min{i : f (xEi
) < 1

C
} ≤ t , the inequality

f (xEi
) < 1

C
is satisfied for some i ≤ t . Since t = k , we have a feature subset Ei such that |Ei | ≤ k .

Now, we show that Ei is also a vertex cover in G. Since f (xEi
) < 1

C
, we have f (x ,Ei ) = 0, i.e.,∑

j I(
∑

p∈Ei
xpj > 0) = |E |. Hence, for each j the indicator function is true which implies edge Ej

is covered by some vertex in Ei . Hence, Ei is a vertex cover in G corresponding to SFE E with
|Ei | ≤ k . �
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